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The well-known (1+1D) nonlinear Schrödinger equation (NSE) governs the propagation of narrow-band pulses in optical 
fibers and others one-dimensional structures. For exploration the evolution of broad-band optical pulses (femtosecond and 
attosecond) it is necessary to use the more general nonlinear amplitude equation (GNAE) which differs from NSE with two 
additional non-paraxial terms. That is way, it is important to make clear the difference between the solutions of these two 
equations.  
We found a new analytical soliton solution of GNAE and compare it with the well-known NSE one. It is shown that for the 
fundamental soliton the main difference between the two solutions is in their phases. It appears that, this changes 
significantly the evolution of optical pulses in multisoliton regime of propagation and admits a behavior different from that of 
the higher-order NSE solitons. 
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1. Introduction 

 
In recent years actively are studied the phenomena 

resulting from the evolution of ultra-short optical pulses in 

dispersive nonlinear medium 
[1,2,3]

. In the femtosecond 

region it is quite easy to be obtained broad-band phase-

modulated pulses or to reach the region of 5-15 fs where 

 One-dimensional NSE is derived for narrow-band 

pulses () propagating in single-mode fibers or 

planar waveguides 
[4-7]

. That is way, it is important to 

study the behavior of laser pulses with broad-band 

spectrum in such structures.  

And here appears the basic question: What kind of 

equation describes the propagation of broad-band pulses as 

well as narrow ones? To answer this question we turned to 

the well-known nonlinear amplitude equation derived in 
[8]

 

where in addition to the dispersion extra non-paraxial 

terms exist. The dimensionless analysis performed below 

shows that these terms play a significant role in the 

dynamics of light pulses.  

Our quick review shows that, up to now, the dynamics 

of laser solitons in different nonlinear fibers and optical 

materials, based on the use of NSE, modified by adding 

extra terms, is well studied 
[9-18]

. However, exact analytical 

soliton solutions of GNAE are not found. This is way one 

of the main tasks of this paper is to find such solution, 

highlighting its advantages and in addition to make a 

comparison with NSE one. The NSE and GNAE are 

written in local time coordinate system. In our 

investigations are neglected the losses and the higher order 

nonlinear and dispersive effects.      

 

2. Exact analytical solution of the nonlinear  
    amplitude equation 

 
2.1 Basic equation 

 
The equation, governing the evolution of broad-band 

and narrow-band pulses in Kerr-type nonlinear dispersive 

isotropic medium, is [2,8,19]:   
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The GNAE is obtained for the first time in [8] and if the 

fourth and the fifth non-paraxial terms in equation (1) are 

neglected it can be transformed into the standard NSE. It is 

important to be pointed, that equation (1) is obtained after 

using Taylor series of the k() near to main 

frequencyThis series continue to be strongly cognate 

up to single cycle regime. The equation (1) governs 

correctly the evolution of narrow-band pulses as well as 

pulses with 5-6 fs duration.   

By making the substitution below, equation (1) can be 

presented in local time coordinate system zz
v

z
tT

gr

 , : 
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The main difference between GNAE and NSE is in the 

additional two terms – second derivative (
22 / zА  ) and 
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mixed derivative ( TzА  /2
). To perform a quantitative 

analysis of the influence of the different terms in equation 

(2) we transform it in dimensionless form by changing the 

variables:  
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The two non-paraxial terms in the brackets are of the same 

order. Since equation (4) has two additional terms, to 

normalize it, it is necessary to take into account two new 

dimensionless parameters ( and ). The constants 

andcount for the number of oscillations at level 1/e of 

the maximum of the amplitude of light pulses and 

respectively the nonlinearity of the medium. The 

parameter is connected with dispersion of group 

velocity. The coefficient (1/2) in front of the expression 

in brackets is inversely proportional to the initial duration 

of the pulse T0. Its magnitude, for laser pulses with carrier 

wavelength m and different T0, propagating in 

silica single-mode fibers, is presented in Table 1. For 

nanosecond and picosecond light pulses this term is quite 

small and can be neglected. That is way, for these regions 

NSE describes well the evolution of laser pulses in single-

mode fibers. Obviously, for femtosecond optical pulses the 

expression in brackets must be taken into account.  

 
Table 1 

 

T0 1/ 

5 fs 3,2.10
-1

 

10 fs 1,6.10
-1

 

50 fs 3,2.10
-2

 

50 ps 3,2.10
-5

 

50 ns 3,2.10
-8

 
 

 

2.2 Solution of the nonlinear scalar amplitude  

       equation 

 

We search for a solution in equation (4) of the kind 
[20]

: 
 

)exp()(),(  ibiaNU                    (5) 

 

where a and b are constants. Assuming that the amplitude 

function Ф() is real and replacing the expression (5) in 

equation (4) the following complex ordinary differential 

equation is obtained: 
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where Ф' and Ф" are respectively the first and second 

derivative of the function Ф with respect to the variable. 
Our next step is to find the constants a and b.  

After equalizing the real and imaginary parts, the 

following two ordinary differential equations are obtained: 

From the real part:  

 

02 3   B                              (7) 

where 

     constbbB  )1(2 2                        (8) 
 

With B is presented the amplitude of the soliton and 

 /2 N . 

From the imaginary part: 
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The first derivative  is nonzero for arbitrary 0 . 

From expressions (8) and (9) we can find the constants a 

and b:  

ba                                    (10) 
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The equation (7) has well known soliton solution: 
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             (12) 

 

Thus, we found that in local time frames GNAE has an 

exact analytical soliton solution with sech-shape and more 

complicated phase:  
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For laser pulses where the conditions and 

are satisfied, the phase of the pulses (14) can be 

simplified. The square root in (14) can be presented in 

Taylor series when   1/1 2   : 
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For the approximated phase can be used the following 

expression:  
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It is not hard to show that the obtained solution written in 

Cartesian coordinate system is an exact analytical solution 

of equation (1) when : 
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If we use the same approximation that was made for 

equation (14), we obtained the following expression: 
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3. Solution of the nonlinear Schrödinger  
     equation 

 

The nonlinear Schrödinger equation, describing the 

propagation of nanosecond and picosecond laser pulses in 

Kerr-type nonlinear dispersive isotropic medium, 

presented in local time coordinate system, has the form 

[1,2,4]: 
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In order to compare the solutions of GNAE and NSE it is 

made the same change of variables (3). NSE (20) in 

dimensionless form is of the kind [1,2,4,20]: 
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The equation (21) has well-known soliton solution [4,8]: 
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Here is the amplitude of the soliton, which does not 

depend on its velocity. In its physical nature, the soliton 

propagates as a modulated wave packet in nonlinear 

dispersive medium with constant velocity without any 

changes in its spatio-temporal profile for arbitrarily long 

distances.  

The fundamental soliton solution () of equation 

(20) in Cartesian coordinate system can be written in the 

form: 
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4. Comparison between the non-paraxial  
    solution and NSE one  

 
The modulus of the non-paraxial soliton solution (13) 

has the same sech-shape as that of NSE one. The main 

difference appears in their phases. The phase of the non-

paraxial soliton (14) has a considerably more complicated 

expression according to the phase of NSE one (23). The 

non-paraxial solution (14) has an additional term with 

linear phase modulation of . It depends inversely on the 

number of oscillations at level 1/e of the maximum of the 

amplitude of the pulse. Thus, it can be expected that for 

higher number of oscillations, the additional phase 

modulation can be neglected and the soliton solution tends 

to the standard NSE one. On the other hand, this term will 

be considerable for ultra-short optical pulses with 

attosecond or femtosecond duration (see Table 1). To 

show its influence on the evolution of laser pulses, we 

performed numerical analysis of NSE and GNAE.   

In Fig. 1 it is shown the dynamics of a non-paraxial 

fundamental soliton with 40 oscillations under its envelope 

(300 fs), obtained by solving the GNAE (4). As it can be 

seen below the evolution of 300 fs optical pulses does not 

differ from that of the typical NSE soliton. The shape and 

the spectrum of the soliton do not change during its 

propagation. 

 

 
 

Fig. 1. Plot of the evolution in - projection of a) the 

intensity profile and b) spectrum of 300 fs fundamental 

non-paraxial soliton (N=1). The numerical results are 

obtained by solving the nonlinear amplitude equation (4).  

 

In Fig. 2 it is shown the evolution of 300 fs higher-

order soliton (N=2) governed again by GNAE (4). From 

the simulations below we can see that the GNAE (4), used 

for describing the behavior of narrow-band optical pulses, 

gives the same results as the NSE (20).  
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Fig. 2. Plot of the evolution in - projection of a) the 

intensity profile and b) spectrum of 300 fs second-order 

non-paraxial soliton (N=2). The numerical results are 

obtained by solving the nonlinear amplitude equation (4). 

It is clearly seen the typical preciosity that occurs for all 

higher - order  solitons.  This  is  the  well - known  result  

                  observed from NSE approximation. 
  

The situation is quite different in the frames of broad-

band optical pulses. In Fig. 3 it is presented the evolution 

of 14 fs non-paraxial optical soliton with few oscillations 

under its envelope. The shape and the spectrum of the 

pulse do not change during its propagation but we observe 

a significant temporal shift of the soliton proportional to 

(1/2). This behavior is a result of the additional phase 

term found in solution (14). Its influence can be seen only 

for broad-band pulses.  

For higher-order solitons the change in the phase of 

broad-band laser pulses, propagating in optical fibers, has 

an essential role. The effect of the additional phase term 

leads to completely different dynamics in comparison with 

the two-sech NSE solitons, even when the higher order  

nonlinear and dispersive effects are not included. On Fig. 

4 it is presented the evolution of broad-band (14 fs) non-

paraxial optical soliton of second-order. As a result of the 

phase shift the soliton breaks up into two components 

which are following periodical pattern that doesn’t match 

with the evolution of the standard two-soliton solution of 

NSE with typical periodicity . The two non-paraxial 

solitons obtained by solving the GNAE form a bound 

state. It is not observed a recovery of the initial shape and 

spectrum of the soliton. 
 

 
 

Fig. 3. Plot of the evolution in  - projection of a) the 

intensity profile, b) real field, normalized to  and c) 

the spectrum of 14 fs non-paraxial fundamental soliton 

(N=1). The numerical results are obtained by solving the  

                   nonlinear amplitude equation (4). 

 

 

Fig. 4. Plot of the evolution in  - projection of a) the intensity profile, b) real field normalized to  and c) the spectrum of 14 

fs non-paraxial second-order soliton (N=2). The numerical results are obtained by solving the nonlinear amplitude equation (4). 
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5. Conclusion 

 
In the present work the propagation of optical pulses 

with narrow and broad-band spectrum in nonlinear regime 

is investigated in the frames of two different evolution 

equations: the general nonlinear amplitude equation (4) 

and the nonlinear Schrödinger equation (21). We found 

new analytical non-paraxial solution of GNAE (4). Its 

dynamics is compared with that of the well-known NSE. 

The main difference between the non-paraxial and the 

standard soliton solution is in their phases. The numerical 

results lead to the following important conclusions: 

 For a large number of oscillations under the 

envelope (narrow-band case) the non-paraxial soliton 

obtained by solving GNAE (4) matches very well with the 

standard soliton solution of NSE (21). That is why NSE is 

used so widely for describing the behavior of narrow-band 

light pulses. 

 For optical pulses with few oscillations under the 

envelope (broad-band case) the evolution of the non-

paraxial solitons differs from that of the typical soliton 

solution of NSE. The shape and the spectrum of a 

fundamental soliton described by the GNAE do not change 

during its propagation but a significant temporal shift is 

observed.   

 Higher-order solitons:  

- For a large number of cycles under the envelope, 

non-paraxial solitons admit the same periodical behavior 

as that of the two-soliton solution of NSE (see Fig. 2).  

- For a few cycles inside the envelope, the non-

paraxial two-soliton solution breaks up into two 

components which form bound state (see Fig. 4). 

In this paper it is shown that GNAE has an exact 

analytical non-paraxial soliton solution which describes 

more accurately and correctly the evolution of broad-band 

optical pulses as well as narrow-band ones in Kerr-type 

nonlinear dispersive isotropic medium. The obtained 

results are important for the better understanding and more 

complete description of the nonlinear dynamics of ultra-

short laser pulses propagating in single-mode fibers or 

planar waveguides. 
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